
CNT 4603: Scripting – Windows PowerShell – Part 6 Page 1 Dr. Mark Llewellyn ©

CNT 4603: System Administration

Spring 2012

Scripting – Windows PowerShell – Part 6

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 4078-823-2790

 http://www.cs.ucf.edu/courses/cnt4603/spr2012

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 2 Dr. Mark Llewellyn ©

The PowerShell Language

• The designers of PowerShell drew extensively on existing scripting and

programming languages to ensure that PowerShell incorporated the

most useful features of many different languages.

• PowerShell is very similar to many of the programming languages that

you are already familiar with in the areas of expressions, operators,

control statements, and functional capabilities. We’ll look only briefly

at these concepts in PowerShell, more to illustrate syntax than any other

purpose.

• We’ll focus in this section of notes more heavily on the new and unique

features of PowerShell that are not found in many other programming

or scripting languages.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 3 Dr. Mark Llewellyn ©

Expressions And Operators In PowerShell

Expressions

• An expression in PowerShell can be understood as a calculation that

evaluates an equation and returns a result.

• An operator in PowerShell is the element of an expression that actually

performs the calculation (such as addition or subtraction).

• PowerShell has three general categories of expressions:

– Arithmetic expressions – expressions that return a numerical result.

– Assignment expressions – used to set, display, and modify variables.

– Comparison expressions – use Boolean logic to compare two values and

return a true or false result.

• The following page illustrates an example of each type of expression.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 4 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 5 Dr. Mark Llewellyn ©

Expressions And Operators In PowerShell

Operators

• PowerShell contains six basic types of operators:

1. Arithmetic operators: +, *, −, /, %

2. Assignment operators: =, +=, −=, *=, /=, %=

3. Comparison operators: −eq, −ne, −gt, −ge, −lt, −le,

−contains, −notcontains

4. Pattern matching operators: −like, −notlike

5. Regular expression operators: −match, −notmatch, −replace

6. Logical and bitwise operators: −and, −or, −xor, −not,

−band, −bor, −bxor, −bnot

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 6 Dr. Mark Llewellyn ©

Expressions And Operators In PowerShell

• Each of the comparison, pattern matching, and regular expression

operators also include a “c” and “i” prefixed version. The “c”

prefix, as in –ceq, indicates case sensitivity, while the “i” prefix,

as in –ieq, indicates case insensitivity.

• The pattern matching and regular expression operators also have

an extensive list of characters that are used with them; we’ll see

these later when looking at these types of operators more closely.

• The next page illustrates a script that uses several different types

of PowerShell operators.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 7 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 8 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 9 Dr. Mark Llewellyn ©

Pattern Matching Operators In PowerShell

• Pattern matching operators in PowerShell use Boolean logic to compare

two strings of text and return a result.

• To provide more granular comparison capabilities, the pattern matching

operators work in conjunction with a set of wildcard operators

(characters) to create patterns for matching.

• Four different wildcard operators can be used with the pattern matching

operators in PowerShell:

– *, matches any pattern. E.g., “apple” –like “a*” returns true

– ?, matches any single character. E.g., “apple” –like “a?p?e” returns true

– [x-y], matches a range of characters. E.g, “apple” –like “[a-c]pple” returns true

– [xy], matches any one of the specified characters. E.g., “apple” –like

[a][p][p][l][e] returns true.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 10 Dr. Mark Llewellyn ©

Regular Expression Operators In PowerShell

• Regular expression operators are closely related to pattern matching

operators in PowerShell. If you’ve ever used Perl, Python (you’re about

to), or PHP, they will be familiar to you, but I’m assuming that you are

not very familiar with any of these other languages.

• Regular expression operators are more flexible than the pattern matching

operations. Regular expression operations support the same type of

syntax and wildcards as pattern matching operations, but the wildcard

operators used with regular expressions are different from the pattern

matching wildcard operators.

• A listing of some of the wildcard operators for regular expression

operators are shown in the tables on the next two pages. These do not

comprise a complete listing.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 11 Dr. Mark Llewellyn ©

Regular Expression Operators In PowerShell

Character

(operator)

Description Example

None Matches exact characters or character

sequence anywhere in the original value

“apple” –match “pl” → true

. Matches any single character “apple” –match “a…e” → true

[value] Matches at least 1 of the characters

between the brackets

“apple” –match “[pear]” → true

[range] Matches at least 1 of the characters within

the specified range

“apple” –match “a[a-z]ple“→

true

[^] Matches any character except those in the

brackets

“apple” –match “[^fig]” → true

^ Performs a match of the specified

characters starting at the beginning of the

original value

“apple” –match “^app” → true

$ Performs a match of the specified

characters starting at the end of the

original value.

“apple” –match “ple$” → true

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 12 Dr. Mark Llewellyn ©

Regular Expression Operators In PowerShell

Character

(operator)

Description Example

* Matches any pattern “apple” –match “a*” → true

? Matches a single character in the string “apple” –match “a?ple” → true

+ Matches a repeating instance of the

preceding character

“apple” –match “ap+le” → true

\ Denotes the character following the

backslash as an escaped character

“apple$” –match “apple\$” →

true

\w Matches any word character “abcd defg” –match “\w+”

matches abcd” → true

\s Matches any white-space character “abcd defg” –match “\s+”

matches abcd” → true

\d Matches any decimal digit 12345 –match “\d+” → true

{n} Specifies exactly n matches “abc” –match “\w{2}” → true

“abc” – match “\w{4}” → false

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 13 Dr. Mark Llewellyn ©

Advanced Operators In PowerShell

• In addition to the basic operators in PowerShell, there are also

several different advanced operators.

• These advanced operators include type operators, unary operators,

grouping operators, array operators, property and method

operators, format operators, and redirection operators.

• We’ll look briefly at each of these categories of advanced

operators.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 14 Dr. Mark Llewellyn ©

Advanced Operators In PowerShell

Type operators

• These operators serve as a method to compare types of two

different objects and return a Boolean true or false value.

• There is also an operator to change the type of an object to

another type.

Unary operators

• Similar to arithmetic operators, they include: +, -, ++, --,

|<type>|, and , (the comma).

• The script on the next page illustrates examples of both of these

types of advanced operators.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 15 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 16 Dr. Mark Llewellyn ©

Advanced Operators In PowerShell

Grouping operators

• These operators are used to bring together a set of terms and

perform an operation against these terms.

• The three types available in PowerShell are parentheses (used to

group expression operators), the subexpressions grouping

operator (the $ used to group together collections of statements,

and the array subsexpressions operator (the @ symbol used to

group together collections of statements and insert the results into

an array).

• Each of these grouping operators is illustrated with examples in

the script on the next page.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 17 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 18 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 19 Dr. Mark Llewellyn ©

Advanced Operators In PowerShell

Property and method operators

• These operators are very commonly used operators in

PowerShell.

• The basic property operator is the period (.), which is used to

access properties of a variable.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 20 Dr. Mark Llewellyn ©

Advanced Operators In PowerShell

Property and method operators

• The method operators are frequently used to in conjunction with

the property operators to provide finer control over the data that is

returned from a property query.

• The basic syntax for using method operators with the period

property operator is shown below:

<variable-name>.<method-name>(method-argument1, method-argument2, …)

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 21 Dr. Mark Llewellyn ©

Advanced Operators In PowerShell

NOTE

When you are working with properties of a variable, one of the helpful

features of PowerShell is the tab completion feature (also see pages 6 & 7

of PowerShell Part 3 notes). Tab completion enables you to enter the

variable name, the period property operator, and then press the Tab key to

cycle through the available properties for that variable.

Try setting a variable in a PowerShell session, enter just the variable name

and a period (as in $a.), and then press the Tab key repeatedly to view the

property options for that variable. Note that the available properties will be

dependent on the variable’s type.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 22 Dr. Mark Llewellyn ©

Advanced Operators In PowerShell

Property and method operators

• The second most commonly used method operator is the double

colon (::). This is used to access members of a specific class of

objects, and it is technically referred to as a static member

accessor. (Thus, the left argument to a :: must be a valid type

name, and the right argument must be a valid member name for

the class on the left.)

• An example would be: [string]::Equals

• To obtain a list of valid methods for a given type, you can use the

command: [<type-name>] | get-member –static

• The next page illustrates this command.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 23 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 24 Dr. Mark Llewellyn ©

Advanced Operators In PowerShell

Property and method operators

• Once you have identified the available methods for a particular

type, you can select the particular method that you want to use for

that type, and then access it using the double colon operator.

• The examples on the next page illustrates this by defining a

variable $c set to a capital A, and then the char type method

ToLower being called against the $c variable to convert the

variable from upper case to lower case.

• The second example shows the variable $d begin set to lower

case a and then the char method ToUpper being called to

convert this variable from lower to upper case.

• Some additional method operations are also illustrated.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 25 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 26 Dr. Mark Llewellyn ©

Advanced Operators In PowerShell

Format operator

• The format operator in PowerShell is used to provide more

granular control over PowerShell’s output.

• The basic structure of a format operator statement includes a

format string on the left and an array of values on the right, as

shown in the following example:

 ‘{0} {1} {2}’ – f 1, 2, 3

• The values on the right side of a format operator statement are not

limited to being numeric (character and string values are also

supported). However, most of the advanced format string

arguments operate primarily against numerical values.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 27 Dr. Mark Llewellyn ©

Advanced Operators In PowerShell

Format operator

• At the basic level, the format operator is used to control the order in

which element of an array are displayed, or which elements are

displayed at all. See the example on page 29.

• However, the format operator can also provide a tremendous number

of other output options, simply by applying different arguments to

the format strings.

• The general syntax for format string arguments is: {0:argument}

where 0 is replaced by the array element that you are interested in,

and argument is replaced by the format string argument that you

want to apply to the data in the array element. The table on the next

page illustrates some of the possible arguments for format strings.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 28 Dr. Mark Llewellyn ©

Advanced Operators In PowerShell

Format

Element

String

Description Example

{0} General format string argument; displays the

specified element exactly as entered.

‘{0}’ –f “myText”

returns MyText

{0:x} Displays the specified element in

hexadecimal format, with the alpha-numeric

characters displayed in lower case.

‘{0:x}’ –f 12345678

returns bc614e

{0:p} Displays the specified element as a

percentage

‘{0:p}’ –f .372

returns 32.70%

{0:C} Displays the specified element in currency

format

‘{0:C}’ –f 15.78

returns $15.78

{0:hh},

{0:mm}

Returns the two-digit hour and two-digit
minute value form a get-date command

‘{0:hh}:{0:mm}’ – f

(get-date) returns

something like 08:45

Some Format String Arguments

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 29 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 30 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 31 Dr. Mark Llewellyn ©

Advanced Operators In PowerShell

Format operator

• The number of different format operators is extensive and far too

lengthy to cover here.

• MSDN provides a comprehensive reference on the syntax for the

use of arguments in .NET Framework formatting strings in the

.NET Framework Developer’s Guide in the section on Formatting

Types. You can find this guide at: www.msdn.microsoft.com and

searching for “formatting types”.

http://www.msdn.microsoft.com/
http://www.msdn.microsoft.com/
http://www.msdn.microsoft.com/
http://www.msdn.microsoft.com/
http://www.msdn.microsoft.com/
http://www.msdn.microsoft.com/
http://www.msdn.microsoft.com/

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 32 Dr. Mark Llewellyn ©

Advanced Operators In PowerShell

Redirection operators

• The final advanced operator type in PowerShell is the redirection

operators.

• Redirection operators are used to direct command output to

another location, such as a file.

• The example on the next page illustrates redirecting the output of

a get-process s* command to a textfile named s-

processes.txt.

NOTE: One major difference in PowerShell’s redirection operations versus other

shells is that the < (input redirection) operator is currently not implemented. A

syntax error is returned if you attempt to use an input redirection operator in a

PowerShell command.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 33 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 34 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 35 Dr. Mark Llewellyn ©

Advanced Operators In PowerShell

Redirection

Operator

Description

> Redirects the output of a command to the specified file. The

specified file is overwritten.

>> Redirects the output of a command to the specified file. If the

specified file exists, the output of the command is appended to the

existing file.

2> Redirects any errors generated by a command to the specified file.

The specified file is overwritten if it exists.

2>> Redirects any errors generated by a command to the specified file.

If the specified file exists, any errors generated by the command

are appended to the existing file.

2>&1 Redirects any errors generated by a command to the output pipe

(displaying the errors at the console) instead of redirecting to a file.

Redirection Operators In PowerShell

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 36 Dr. Mark Llewellyn ©

Escape Sequences In PowerShell

• The grave-accent or backtick (`) acts as the PowerShell escape

character. Depending on when this character is used, PowerShell

interprets characters immediately following it in a certain way.

• If the backtick character is used at the end of a line in a script, it acts

as a continuation character. In other words, it allows you to break

long lines of code into smaller chunks.

• If the backtick character precedes a PowerShell variable, the

characters immediately following it should be passed on without

substitution or processing.

• If the backtick character is used in a string or interpreted as part of a

string, that means the next character is interpreted as a special

character. For example, if you want to put a TAB in your string, you
use the `t escape character. See next page for examples of each.

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 37 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 6 Page 38 Dr. Mark Llewellyn ©

Escape Character Sequences Supported By PowerShell

Character

Sequence

Meaning

`’ Single quotation mark

`” Double quotation mark

`0 Null character

`a Alert (bell or beep signal to computer’s speaker

`b backspace

`f Form feed (used only for printer output)

`n Newline

`r Carriage return

`t Horizontal tab (8 spaces)

‘v Vertical tab (used only for printer output)

